Learn R Programming

rmutil (version 1.1.4)

Beta Binomial: Beta Binomial Distribution

Description

These functions provide information about the beta binomial distribution with parameters m and s: density, cumulative distribution, quantiles, and random generation.

The beta binomial distribution with total \(= n\) and prob \(= m\) has density $$p(y) = \frac{B(y+\sigma \mu, n-y+\sigma*(1-\mu)) {n \choose y} }{B(s m,s (1-m))}% $$ for \(y = 0, \ldots, n\) where \(B()\) is the beta function.

Usage

dbetabinom(y, size, m, s, log=FALSE)
pbetabinom(q, size, m, s)
qbetabinom(p, size, m, s)
rbetabinom(n, size, m, s)

Arguments

y

vector of frequencies

q

vector of quantiles

p

vector of probabilities

n

number of values to generate

size

vector of totals

m

vector of probabilities of success

s

vector of overdispersion parameters

log

if TRUE, log probabilities are supplied.

See Also

dbinom for the binomial, ddoublebinom for the double binomial, and dmultbinom for the multiplicative binomial distribution.

Examples

Run this code
# NOT RUN {
# compute P(45 < y < 55) for y beta binomial(100,0.5,1.1)
sum(dbetabinom(46:54, 100, 0.5, 1.1))
pbetabinom(54,100,0.5,1.1)-pbetabinom(45,100,0.5,1.1)
pbetabinom(2,10,0.5,1.1)
qbetabinom(0.33,10,0.5,1.1)
rbetabinom(10,10,0.5,1.1)
# }

Run the code above in your browser using DataLab